تطبيقات على قانون الغاز المثالي

تطبيقات على قانون الغاز المثالي

يتم تطبيق قانون الغاز المثالي على الأحجام المولية والكثافة ومسائل القياس الكيميائي ، وحتى يومنا هذا نجد أن قوانين الغاز تتطلب أن يغير الغاز ظروفه ، ويمكننا أن نتوقع أن يحدث تغيير ناتج في إحدى خصائصه .

يعتبر الضغط والحجم كذلك درجة الحرارة والكمية من الخصائص الفيزيائية المستقلة الأربعة والوحيدة للغاز ، حيث أن الثابت في المعادلة هو بالفعل يعتبر ثابت في الواقع ، وذلك لأننا لا نحتاج إلى تحديد هوية الغاز من أجل تطبيق قوانين الغاز .

ونجد أن المعادلة pv=nrt تلك المعادلة تعرف باسم قانون الغاز المثالي الذي يتعلق بالخصائص الأربع المستقلة للغاز في أي وقت ، ويسمى ثابت قانون الغاز المثالي ، حيث تعتد قيمته R الثابت على الوحدات التي تستخدم من أجل التعبير عن الضغط والحجم.

يتم استخدام قانون الغاز المثالي ، مثل أي قانون غاز آخر مع التركيز إلى الوحدات والتأكد من التعبير عن درجة الحرارة بوحدة الكلفن ولكن يجب معرفة


متى يسلك الغاز الحقيقي سلوك الغاز المثالي


، وعلى الرغم من ذلك فإن قانون الغاز المثالي لا يتطلب تغيير في ظروف عينة الغاز . [1]

ولكي نقوم بربط كمية الغاز التي يتم استهلاكها ، أو التي تكون منبعثة في تفاعل كيميائي بقياس العناصر المتفاعلة في التفاعل ، ولكي نفهم كيف يتم استخدام معادلة الغاز المثالية والقياس المتكافئ من أجل التفاعل لحساب حجم الغاز المنتج ، أو المستهلك في عملية التفاعل.

ويمكننا استخدام العلاقة بين كميات الغازات بالمولات وأحجامها باللترات من أجل حساب قياس العناصر المتفاعلة والتي تشتمل على غازات ، إذا كان الضغط ودرجة الحرارة معروفين ، يعتبر ذلك أمر مهم لعدة أسباب تتضمن العديد من التفاعلات التي يتم إجراؤها في المختبر لتكوين أو تفاعل غاز .

كثافة الغاز والكتلة المولية

تختلف الكثافة بالنسبة لـ


قوانين الغازات


باختلاف عدد جزيئات الغاز في الحجم الثابت ،حيث يمكن معالجة معادلة الغاز المثالي من أجل حل أنواع مختلفة ومتعددة من المشاكل ، لتحديد كثافة غاز معين نقوم بإعادة ترتيب المعادلة .

يمكن التعبير عن كثافة الغاز بشكل عام باستخدام وحدة جرام/ لتر حيث يعطى ضرب الجانبين الأيمن ، والأيسر للمعادلة للغاز (M) بـ الكتلة المولية ، ويتيح لنا تحديد كثافة الغاز عندما نعرف الكتلة المولية ، أو العكس .

نجد أنه من الأمثلة على الكثافة المتغيرة لغرض مفيد هو منطاد الهواء الساخن ، والذي يتكون من كيس يعرف باسم المغلف ويكون قادر على احتواء الهواء الساخن، عندما يتم تسخين الهواء الذي يوجد في الغلاف يصبح أقل كثافة من الهواء البارد المحيط ، والذي يتمتع بقوة رفع كافية بسبب الطفو ، وذلك لجعل البالون يطفو ويصعد في الهواء ، يكون مطلوب تسخين الهواء بشكل مستمر لإبقاء البالون مرتفعًا .

عندما يبرد الهواء داخل البالون يتقلص مما يسمح بدخول الهواء البارد الخارجي وتزداد الكثافة ، عندما يتم التحكم في ذلك بشكل جيد من قبل الطيار يمكن أن يهبط البالون برفق كما ارتفع ، ومن الجدير بالذكر تزداد كثافة الغاز مع زيادة الضغط ، وتنخفض كثافة الغاز مع زيادة درجة الحرارة .

ومن أجل تحديد أحجام الغاز في التفاعلات الكيميائية يمكننا استخدام قانون الغاز المثالي لحساب حجم الغازات المستهلكة أو المنتجة ، وغالبًا ما يتم استخدام معادلة الغاز المثالي للتحويل بين الأحجام والكميات المولية في المعادلات الكيميائية . [2]

ما هو الشكل المولي لـ قانون الغاز المثالي

نجد أن جميع الغازات معقدة وتكون مليئة بالمليارات من جزيئات الغاز النشطة التي يمكن أن تصطدم وربما تتفاعل مع بعضها البعض ، كما يجب معرفة


الفرق بين خصائص


الغاز الحقيقي والغاز المثالي


، وذلك لأنه من الصعب وصف الغاز الحقيقي بالضبط ، فقد ابتكر الناس مفهوم الغاز المثالي كتقريب يساعد في نمذجة وتوقع سلوك الغازات الحقيقية .

كما أننا نجد أنه يشير مصطلح الغاز المثالي إلى غاز افتراضي يتكون من جزيئات تتبع بعض القواعد ، حيث أن جزيئات الغاز المثالية لا تجتذب ، أو تتنافر سوف يكون التفاعل الوحيد بين جزيئات الغاز المثالية هو التصادم المرن عند الاصطدام ببعضها البعض ، أو من خلال التصادم المرن بجدران الحاوية .

يرتبط الضغط للغاز المثالي بصيغة بسيطة تسمى قانون الغاز TTT المثالي ، حيث تعد بساطة تلك العلاقة سبب كبير وراء تعاملنا مع الغازات باعتبارها مثالية ما لم يكن هناك سبب آخر لكي نقوم بذلك . [3]

ما هو التصادم المرن

تعتبر جزيئات الغاز المثالية نفسها لا تأخذ أي حجم ، حيث أن الغاز يأخذ حجمًا نظرًا لأن الجزيئات قد تتوسع في مساحة كبيرة من الفضاء ، ولكن جزيئات الغاز المثالية يتم تقريبها كجسيمات نقطية لا يوجد لها حجم في حد ذاتها .

إذا كان ذلك الأمر يبدو مثالي لدرجة يصعب تصديقها ، فسوف نستدل من ذلك أنه لا توجد غازات مثالية بشكل تام ، ولكن في الواقع يوجد الكثير من الغازات القريبة بدرجة كافية ، بحيث يكون مفهوم الغاز المثالي مفيد للغاية للعديد من المواقف حيث أن


المتغير الذي يبقى ثابتًا عند استخدام القانون العام للغازات


يمكننا الاستدلال من خلاله على وجود الغاز المثالي أيضًا .

وأما بالنسبة لدرجات الحرارة القريبة من درجة حرارة الغرفة والضغوط القريبة من الضغط الجوي ، فنجد العديد من الغازات التي نهتم بها تكاد تكون مثالية للغاية ، وإذا كان ضغط الغاز كبير للغاية على سبيل المثال أكبر بمئات المرات من الضغط الجوي ، أو كانت درجة الحرارة منخفضة جدًا يمكن أن يكون هناك انحرافات كبيرة عن قانون الغاز المثالي . [3]

تطبيقات الحياة الواقعية لقوانين الغاز

اكتشف العلماء على مر القرون قوانين تشرح كيف تؤثر خصائص مثل الحجم والضغط على طريقة تصرف الغازات ، حيث من ضمن هذه القوانين قانون

و



تطبيقات


قانون جاي لوساك


، ربما أنك لا تعرف أنك تتبع مبادئ علمية مهمة أثناء عملك .

حيث أنه وفقًا لقانون تشارلز فإن زيادة الحجم تتناسب مع زيادة درجة الحرارة إذا قمت بتسخين كمية ثابتة من الغاز بضغط ثابت ، وقد أظهر ذلك القانون من خلال ملاحظة ، كيف تصبح كرة القدم المنتفخة في الداخل أصغر إذا أخذتها في الخارج في يوم بارد .

وقد أصبح التنفس صعب بسبب قانون دالتون حيث ينص ذلك القانون على أن الضغط الكلي لمزيج الغازات يساوي مجموع جميع الغازات ، التي توجد في الخليط ، ويفترض ذلك المثال أنه يوجد غازين فقط في الخليط ، وقد تتمثل إحدى نتائج ذلك القانون في أن الأكسجين يمثل 21 بالمئة من إجمالي ضغط الغلاف الجوي ، لأنه يشكل 21 بالمئة من الغلاف الجوي .

يستخدم الأشخاص الذين يصعدون إلى ارتفاعات عالية قانون دالتون عندما يحاولون التنفس مع صعودهم إلى أعلى ينخفض الضغط الجزئي للأكسجين مع انخفاض الضغط الجوي الكلي حسب قانون دالتون . [4]