اسهامات علماء العرب في حساب المثلثات

علم المثلثات هو أحد أكثر فروع الرياضيات عملية ، حيث نجد استخدامات

علم حساب المثلثات

في الهندسة على سبيل المثال

كيفية حساب زوايا المثلثات

، والفيزياء ، والكيمياء ، والمسح ، وتقريباً كل العلوم الأخرى والعلوم التطبيقية وهي أيضًا واحدة من أقدم فروع الرياضيات التطبيقية ، وتم تأريخ المشاكل العملية في علم المثلثات الخام إلى مصر في حوالي عام 1850 قبل الميلاد ، وقد طور الإغريق القدماء علم المثلثات أكثر تعقيدًا بعد حوالي 2000 عام ، ومنذ ذلك الوقت لعب علم المثلثات دورًا حاسمًا في العديد من فروع الرياضيات والعلوم وهو أمر لا غنى عنه لفهمنا للعلوم والتخصصات التقنية اليوم .

نشأة علم حساب المثلثات

أقدم ذكر لمشكلة تتعلق بعلم المثلثات ورد في بردية مصرية يرجع تاريخها إلى حوالي 1850 قبل الميلاد ، وعلى الرغم من أن المفاهيم المستخدمة لم يتم ذكرها في المصطلحات المثلثية التقليدية ، فمن الواضح من السياق أن شكلاً من أشكال حساب المثلثات البدائية كان موجودًا في هذا الوقت وتم استخدامه للمساعدة في ضمان بناء الأهرامات وفقًا لمواصفات المهندس المعماري ، ومع ذلك فمن شبه المؤكد أن المصريين لم يضعوا حساباتهم في سياق رياضي يسمح لهم باستخلاص أي استنتاجات أخرى من نتائجهم ، فقد تم تطبيق الرياضيات المعنية فقط على مشاريع البناء .

تطور علم حساب المثلثات

وصل البابليون إلى المعلم التالي في تطوير علم المثلثات كنظام رياضي حقيقي عندما قسموا الدائرة إلى 360 قسمًا أو درجة متساوية ، ولقد فعلوا ذلك لأن السنة في تقويمهم بها 360 يومًا لذلك كل يوم يمثل درجة علمية ، وبما أن البابليين استخدموا نظام رقم الأساس 60 على عكس نظامنا الأساسي 10 ، فإن 360 درجة كانت ملائمة مرتبة في رياضياتهم الحالية ، واخترع البابليون أيضًا العقرب وهو جهاز لقياس المسافة الزاوية للنجوم أو الكواكب فوق الأفق والتي كانت تشبه المنقلة .

من المثير للاهتمام أن نلاحظ مدى عمق نظام الترقيم البابلي اليوم ، وتحتوي ساعاتنا على 60 دقيقة من 60 ثانية لكل ساعة ، ونستمر في استخدام الدوائر بزاوية 360 درجة ، وتستخدم خرائطنا 60 دقيقة من القوس إلى درجة و 60 ثانية قوسية دقيقة قوس ، وتعتمد الساعات والخرائط والمنقلة في جميع أنحاء العالم على هذا النظام ، على الرغم من أن النظام العشري سيكون أسهل في الاستخدام .

مساهمة الإغريق في علم المثلثات

كان الإغريق أول من رفع علم المثلثات إلى مستوى فرع مستقل للرياضيات ، وقدم علماء المثلثات اليونانيون مثل فيثاغوروس وإقليدس وأريستارخوس نظرية المثلثية ودافعوا أيضًا عن استخدامات عملية جديدة ، ربما كانت أكثر هذه الاستخدامات طموحًا هي حساب إيراستوستينس لمحيط الأرض وتحديد هيبارخوس لمسافة القمر عن الأرض ، وفي كلتا الحالتين كانت النتائج النهائية قريبة بشكل مدهش من القيم المقبولة حاليًا على الرغم من الأدوات الخام المستخدمة في ذلك الوقت .

في الهند حقق الهندوس مزيدًا من التقدم أثناء وبعد القرن الخامس ، وتضمنت هذه التطورات بناء بعض الجداول المثلثية المبكرة ، والأهم من ذلك اختراع نظام ترقيم جديد جعل الحساب أكثر بساطة ، وأسس علماء الرياضيات الهندوس نسختهم من علم المثلثات على متغيرات دالة الجيب ، وأدى النظام الهندوسي ليس فقط إلى دالة الجيب ولكن إلى دالة جيب التمام والظل ، وغيرها من الدوال المثلثية المألوفة التي نستخدمها اليوم .

العلماء العرب وعلم حساب المثلثات

عند البحث عن

العلماء العرب ودورهم في خدمة البشرية

، نجد أنهم خلال قرون من اتصالهم مع اليونانيين والهندوس ، تبنى علماء الرياضيات العرب العديد من اكتشافاتهم الرياضية ، ومن

أسماء علماء الرياضيات المسلمين

العرب البارزين الذين ساعدوا في ترجمة نصوص الرياضيات الهندوسية أو أدخلوا الرياضيات الهندوسية إلى العرب البطاني من 850 إلى 929 ، وأبو الوفا من 940 إلى 998 ، والبيروني عام 973 ، وقام البتاني بتكييف علم المثلثات اليوناني والملاحظات الفلكية لجعلها أكثر فائدة ، وكان البيروني من بين أول من استخدم وظيفة الجيب في علم الفلك والجغرافيا ، وساعد أبو الوفا في تطبيق علم المثلثات الكروي على علم الفلك من بين مساهمات مهمة أخرى .

تأثير علماء العرب في علم المثلثات

قام علماء الرياضيات والعلماء العرب في العصور الوسطى بأكثر من ترجمة النصوص اليونانية إلى العربية ، فقد قاموا بترجمة نصوص يونانية محددة لاستخدامها كمواد مرجعية لأبحاثهم الخاصة في هذه المجالات ، ويقع العالم العربي بين قوتين فكريتين أخريين الهند واليونان ، وتعرّف العلماء العرب على التقاليد الرياضية الغنية لثقافتهم ، وإضافة إلى ذلك أضافوا أفضل ما في الرياضيات والعلوم اليونانية والهندوسية ، ثم تمكنوا من تجميع هذه العناصر في طريقة جديدة للنظر في الرياضيات ، بالإضافة إلى وضع رياضياتهم في حل المشكلات العملية .

عالم الرياضيات العربي أبو الوفا

عند القيام بعمل

بحث عن احد علماء العرب

نجد أن أبو الوفا قدم عدة مساهمات مهمة في رياضيات ذلك اليوم ، قدم أول ذكر مسجل للأرقام السالبة في كتاب كتبه في النصف الأخير من القرن العاشر ، واليوم نأخذ الأرقام السالبة كأمر مسلم به ، ولكن منذ ألف عام لم تكن الأرقام السالبة مقبولة على نطاق واسع لأنها لم تكن منطقية للناس في ذلك الوقت ، على سبيل المثال يمكننا جميعًا تخيل وجود تفاحة ، ولكن كيف تتخيل وجود تفاحة سلبية ، كيف تبدو ، كيف تحسبها ، لم يكن الناس في أيام أبو الوفا معتادون على التفكير بهذه المصطلحات ، ورفض الكثيرون ذلك ببساطة .

وصف أبو الوفا الأرقام السلبية من الناحية النقدية ، مشيراً إليها بالديون ، ويمكن فهم هذا الوصف للأرقام السالبة بشكل حدسي وكان مفيدًا في إدخال الأرقام السالبة في الرياضيات السائدة .

كان بناء أبو الوفا لجداول الجيب مهمًا أيضًا ، وقد يبدو وجود جداول الجيب أمرًا عاديًا لأن لدينا اليوم آلات حاسبة تحسب على الفور جميع الدوال المثلثية ، ولاستخدام الدوال المثلثية في الحسابات منذ 1000 عام ، كان على المرء أن يعرف قيمها ، وقد جاءت هذه إما من الحساب اليدوي أو من الجداول التي تم حسابها يدويًا وتوزيعها بشق الأنفس ، وعندما قرر حساب قيمة دالة الجيب لجميع الزوايا بزيادات قدرها 15 درجة ، ألزم أبو الوفا نفسه بمهمة متكررة شاقة ومخدرة للعقل تتطلب ليس فقط قدرًا كبيرًا من الالتزام ولكن أيضًا اهتمام لا يمكن تخيله تقريبًا بالتفاصيل ، ومع ذلك فقد جعل عمله هذه الجداول متاحة للأجيال القادمة من علماء الرياضيات الذين استخدموا طاولاته أو مشتقاتهم لعدة قرون .

كان أبو الوفا أيضًا أول من أدخل مفهوم المماس والقاطع إلى الرياضيات العربية ، وهذه الوظائف جميع مشتقات دالة الجيب ، مفيدة للغاية في العديد من مجالات الدراسة ، بما في ذلك الفيزياء والهندسة والعمارة والمسح ، وتم وصف الظل بواسطة علماء الرياضيات الهندوس ، لكن أبو الوفا أوضح كيف يمكن استخدام جميع المفاهيم في الحسابات الرياضية ، ومن خلال تقديم هذه الدوال ساعد أبو الوفا في زيادة قيمة علم المثلثات من خلال خلق مفاهيم وسعت نطاقه .

إذا كان أبو الوفا قد ترجم فقط بعض النصوص الغامضة إلى العربية وولد بعض الوظائف المثيرة للاهتمام ، فربما يكون قد انتقل إلى التاريخ دون إشعار آخر ، ومع ذلك ساعد أبو الوفا وغيره من العلماء العرب على دمج المفاهيم الرياضية من تقاليد رياضية متميزة في تركيب كان أكثر أهمية من أي من أجزائه ، وأخذ علماء الرياضيات العرب علم المثلثات الهندسي الهويات المثلثية المستمدة من الرسومات الهندسية لليونانيين ، وأضافوا التطور الرياضي ونظام الترقيم المتفوق للرياضيات الهندوسية ، لإنشاء حساب مثلثات يشبه إلى حد كبير مثيله اليوم .[1]