الاستخدامات الواقعية لنظرية فيثاغورس


نظرية فيثاغورس

هي بيان في الهندسة ، يظهر العلاقة بين أطوال أضلاع المثلث الأيمن ، مثلث بزاوية 90 درجة ، ومعادلة المثلث الأيمن هي a2 + b2 = c2، وإن القدرة على العثور على طول أحد الجانبين ، بالنظر إلى أطوال الجانبين الآخرين تجعل نظرية فيثاغورس تقنية مفيدة للبناء ، والملاحة.

الاستخدامات الواقعية لنظرية فيثاغورس


العمارة والبناء

بالنظر إلى خطين مستقيمين ، تسمح لك نظرية فيثاغورس ، بحساب طول القطر الذي يربطهما ، ويستخدم هذا التطبيق بشكل متكرر في الهندسة المعمارية ، أو النجارة ، أو مشاريع البناء المادية الأخرى ، على سبيل المثال ، لنفترض أنك تقوم ببناء سقف مائل.

وإذا كنت تعرف ارتفاع السقف ، والطول المطلوب تغطيته ، ويمكنك استخدام نظرية فيثاغورس للعثور على الطول القطري لمنحدر السقف ، ويمكنك استخدام هذه المعلومات لقطع العوارض ، ذات الحجم المناسب لدعم السقف ، أو حساب مساحة السقف التي قد تحتاج إليها. [1]


وضع زوايا مربعة

تستخدم نظرية فيثاغورث أيضًا في البناء ، للتأكد من أن المباني مربعة ، والمثلث الذي تتوافق أطواله الجانبية مع نظرية فيثاغورس ، مثل مثلث 3 قدم × 4 قدم × 5 قدم ، وسيكون دائمًا مثلثًا صحيحًا ، وعند وضع الأساس ، أو بناء زاوية مربعة بين جدارين ، سيضع عمال البناء مثلثًا من ثلاثة خيوط تتوافق مع هذه الأطوال ، وإذا تم قياس أطوال السلسلة بشكل صحيح ، فإن الزاوية المقابلة لوتر المثلث ستكون زاوية قائمة ، لذلك سيعرف البنائيون أنهم يقومون ببناء جدرانهم ، أو أسسهم على الخطوط الصحيحة.


بناء الزوايا الصحيحة

الطريقة الأكثر وضوحا لاستخدام نظرية فيثاغورس ، هي بناء الزوايا الصحيحة ، ربما تم وضع قواعد الأهرامات المصرية بهذه الطريقة ، فقد كان معروفًا في ذلك الوقت أن المثلث ذو الجوانب 3 و 4 و 5 له زاوية قائمة ،  بالمعنى الدقيق للكلمة ، يستخدم هذا معكوس نظرية فيثاغورس ، ولكن عندما تحدد ثلاثة جوانب مثلثًا فريدًا ، فإنهما متكافئان.

وتساعد نظرية فيثاغورس أيضًا في إيجاد صيغة مفيدة ، لحل المثلثات الأكثر عمومية ، فمن الواضح أن حل المثلثات مهم للمسح ، هذا هو المكان الذي تأتي منه كلمة (علم المثلثات) ، تقسيم المنطقة إلى مثلثات للعثور على مسافة يصعب قياسها مباشرة.

إذا قسمت المثلث إلى قسمين عن طريق رسم عمودي ، من قمة واحدة إلى الجانب المقابل ، فيمكنك تطبيق نظرية فيثاغورس في كل مثلث للعثور على صيغة (قاعدة جيب التمام) ، وللعثور على زاوية معينة من ثلاثة جوانب ، أو الجانب المقابل ل زاوية معروفة نظرا للجانبين الآخرين.

وإذا لم تكن قد رأيت ذلك ، فسيكون من الجيد بالنسبة لك محاولة اكتشافه بنفسك ، فليس الأمر صعبًا ، يجب عليك فقط إدخال مسافتين إضافيتين: دع h يكون ارتفاع المثلث ، و d مسافة العمودية من الزاوية المعروفة ، والقضاء h و d من بعض المعادلات.[2]


التنقل

نظرية فيثاغورس مفيدة للملاحة ثنائية الأبعاد ، حيث يمكنك استخدامه وطولان للعثور على أقصر مسافة ، وعلى سبيل المثال ، إذا كنت في البحر وتتنقل إلى نقطة تبعد 300 ميل شمالًا ، و 400 ميل غربًا ، يمكنك استخدام النظرية للعثور على المسافة من سفينتك ، إلى تلك النقطة وحساب عدد الدرجات إلى الغرب من الشمال ، والتي بحاجة لمتابعة لمتابعة هذه النقطة.

وستكون المسافات بين الشمال ، والغرب ساقي المثلث ، وأقصر خط يربطهما سيكون قطريًا ، ويمكن استخدام نفس المبادئ للملاحة الجوية ، وعلى سبيل المثال ، يمكن للطائرة استخدام ارتفاعها فوق سطح الأرض ، وبُعدها عن مطار الوجهة للعثور على المكان الصحيح ، لبدء النزول إلى ذلك المطار.


المسح

المسح هو العملية التي يقوم بها رسامي الخرائط ، بحساب المسافات ، والارتفاعات الرقمية بين النقاط المختلفة قبل إنشاء الخريطة ، ونظرًا لأن التضاريس غالبًا ما تكون غير متساوية ، يجب على المساحين إيجاد طرق ،  لأخذ قياسات المسافة بطريقة منهجية.

وتُستخدم نظرية فيثاغورس لحساب انحدار منحدرات التلال أو الجبال ، وينظر المساح عبر التلسكوب باتجاه عصا القياس ، على مسافة ثابتة ، بحيث يشكل خط رؤية التلسكوب ، وعصا القياس زاوية قائمة ، بما أن المساح يعرف كلاً من ارتفاع عصا القياس ، والمسافة الأفقية للعصا من التلسكوب ، فيمكنه بعد ذلك استخدام النظرية للعثور على طول المنحدر ، الذي يغطي تلك المسافة ، ومن هذا الطول ، تحديد مدى انحداره.[3]


أمثلة تطبيق واقعي لنظرية فيثاغورس


رحلة على الطريق

لنفترض أن صديقين يلتقيان في الملعب ، ماري موجودة بالفعل في الحديقة ، لكن صديقها بوب يحتاج إلى الوصول إلى أقصر طريق ممكن ، هنا  لدى بوب طريقتان في الذهاب ، يمكنه اتباع الطرق المؤدية إلى الحديقة ، أولًا يتجه جنوبًا 3 أميال ، ثم يتجه غربًا أربعة أميال.

وسيكون إجمالي المسافة التي يتم تغطيتها بعد الطرق 7 أميال ، والطريقة الأخرى التي يستطيع من خلالها الوصول إليها هي قطع بعض الحقول المفتوحة ، والسير مباشرة إلى الحديقة ، إذا طبقنا نظرية فيثاغورس لحساب المسافة ستحصل على: (3) 2 + (4) 2 = 9 + 16 = C2 √25 = C 5 ميل. = C ، وسيكون السير عبر الحقل أقصر بمقدار ميلين ، من المشي على طول الطرق.


الرسم على الحائط

يستخدم الرسامون السلالم للطلاء على المباني العالية ، وغالبًا ما يستخدمون نظرية فيثاغورس لإكمال عملهم ،  ويحتاج الرسام إلى تحديد الطول الذي يجب أن يكون عليه السلم ، من أجل وضع القاعدة بأمان بعيدًا عن الجدار حتى لا ينقلب.

وفي هذه الحالة يكون السلم نفسه هو الوتر ، على سبيل المثال رسامًا عليه رسم جدار ، يبلغ ارتفاعه حوالي 3 أمتار ، يجب على الرسام أن يضع قاعدة السلم على بعد 2 متر من الحائط ، للتأكد من أنه لن ينقلب ، وما هو طول السلم الذي يحتاجه الرسام لإكمال عمله؟.

يمكنك حسابها باستخدام نظرية فيثاغورس : (3) 2 + (2) 2 = C2 9 + 4 = C2 √13 = C 3.6 م. = C وبالتالي ، سيحتاج الرسام إلى سلم يبلغ ارتفاعه ، حوالي 3.6 متر.[4]


شراء حقيبة سفر

يريد السيد هاري شراء حقيبة سفر ، ويخبر صاحب المتجر السيد هاري أن لديه حقيبة 30 بوصة ، متوفرة في الوقت الحاضر ، وارتفاع الحقيبة 18 بوصة ، فاحسب الطول الفعلي للحقيبة للسيد هاري ، باستخدام نظرية فيثاغورس ، ويتم حسابها بهذه الطريقة : (18) 2 + (b) 2 = (30) 2 324 + b2 = 900 B2 = 900 – 324 b = √576 = 24 بوصة 4) ، ما حجم التلفزيون الذي يجب عليك شرائه؟

شاهد السيد جيمس إعلانًا عن تلفزيون في الجريدة حيث يذكر أن التلفزيون بارتفاع 16 بوصة ، وعرض 14 بوصة  ، احسب الطول القطري لشاشته للسيد جيمس ، باستخدام نظرية فيثاغورس ، يمكن حسابها على النحو التالي : (16) 2 + (14) 2 = 256 + 196 = C2 √452 = C 21 بوصة تقريبًا. = C 5).

والعثور على الكمبيوتر المناسب الحجم : تريد ماري الحصول على شاشة كمبيوتر لمكتبها ، ويمكن أن تحمل شاشة مقاس 22 بوصة ، وقد وجدت شاشة عرضها 16 بوصة ، وارتفاعها 10 بوصات ، هل يتناسب الكمبيوتر مع مقصورة ماري؟  ، استخدم نظرية فيثاغورس لمعرفة : (16) 2 + (10) 2 = 256 + 100 = C2 √356 = C 19 بوصة تقريبًا. = C.