ما هي الأعداد الأولية
الرقم الأولي هو عدد صحيح أكبر من 1 ، وتكون عوامله الوحيدة 1 ونفسها العامل هو عدد صحيح ، ويمكن تقسيمه بالتساوي إلى رقم آخر ، والأرقام الأولية القليلة الأولى هي 2 و 3 و 5 و 7 و 11 و 13 و 17 و 19 و 23 و 29 ، أما
الأرقام
التي تحتوي على أكثر من عاملين تسمى
الأرقام المركبة
، والرقم 1 ليس أولي ولا مركب.
والأعداد الأولية هي أرقام خاصة لا يمكن تقسيمها إلا عن طريق رقم واحد ، ف 19 هو رقم أولي ، يمكن تقسيمها فقط على 1 و 19 ، والرقم 9 ليس رقمًا أوليًا ، يمكن تقسيمها على 3 بالإضافة إلى 1 و 9.
العدد الأولي الأكبر
لكل عدد أولي( ص) ، يوجد رقم أولي (ص) ، مثل هذا (ص) ، أكبر من (ص) ، هذا البرهان الرياضي ، الذي أظهره عالم الرياضيات اليوناني
إقليدس
في العصور القديمة ، ويؤكد صحة الفكرة القائلة ، بأنه لا يوجد رقم أولي أكبر ، مع استمرار مجموعة الأرقام الطبيعية ، ن = (1 ، 2 ، 3 ،… ) ، ومع ذلك فإن العائدات الأولية تصبح أقل تكرارًا بشكل عام ، ويصعب العثور عليها في فترة زمنية معقولة ، حتى كتابة هذه السطور ، كان أكبر رقم أولي معروف يحتوي على 24862048 رقم ، تم اكتشافه في 2018 من قبل باتريك لاروش من شركة الإنترنت الكبرى ، Mersenne Prime Search (GIMPS).
دليل إقليدس على وجود عدد لا نهائي من الأعداد الأولية
ولإثبات وجود عدد لا نهائي من الأعداد الأولية ، استخدم إقليدس نظرية أساسية أخرى كانت معروفة له ، وهي العبارة التي تقول (يمكن كتابة كل رقم طبيعي كمنتج للأرقام الأولية) ، فمن السهل إقناع حقيقة هذا الادعاء الأخير ، إذا اخترت رقمًا غير مركب ، فسيكون هذا الرقم أوليًا.[1]
خلاف ذلك ، يمكنك كتابة الرقم الذي اخترته كمنتج من رقمين أصغر ، وإذا كان كل من الأرقام الأصغر هو أولي ، فقد عبرت عن رقمك كمنتج للأرقام الأولية ، وإذا لم يكن الأمر كذلك ، فاكتب الأرقام المركبة الصغيرة كمنتجات ذات أرقام أصغر ، وما إلى ذلك.
وفي هذه العملية ، يمكنك الاستمرار في استبدال أي من الأرقام المركبة بمنتجات ذات أرقام أصغر ، نظرًا لأنه من المستحيل القيام بذلك إلى الأبد ، يجب أن تنتهي هذه العملية ، ولا يمكن تقسيم جميع الأرقام الصغيرة التي ينتهي بها الأمر ، مما يعني أنها أرقام أولية ، كمثال لنقم بتقسيم الرقم 72 إلى عوامل رئيسية :
72 = 12 × 6 = 3 × 4 × 6 = 3 × 2 × 2 × 6 = 3 × 2 × 2 × 2 × 3.
واستنادًا إلى هذه الحقيقة الأساسية ، يمكننا الآن شرح دليل إقليدس على ما لا نهاية لمجموعة الأعداد الأولية ، وسنوضح الفكرة باستخدام قائمة الأعداد العشرة الأولى ، ولكننا نلاحظ أن هذه الفكرة نفسها تعمل مع أي قائمة محدودة من الأعداد الأولية.
فبضرب جميع الأرقام في القائمة ونضيف رقمًا إلى النتيجة ، ونعطي الاسم N للرقم الذي نحصل عليه ، فقيمة N لا تهم في الواقع حيث يجب أن تكون الوسيطة صالحة لأي قائمة :
N = (2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29) +1
ويمكن كتابة الرقم N ، تمامًا مثل أي رقم طبيعي آخر ، كمنتج للأرقام الأولية ، من هم هؤلاء الأوائل ، العوامل الرئيسية لـ N؟ لا نعلم ، لأننا لم نحسبها ، ولكن هناك شيء واحد نعرفه على وجه اليقين : أن جميعهم يقسمون N.
لكن الرقم N يترك باقي واحد عند قسمة ، على أي من الأعداد الأولية في قائمتنا 2 ، 3 ، 5 ، 7 ، … ، 23 ، 29 ، ومن المفترض أن تكون هذه قائمة كاملة بأساسياتنا ، لكن لا أحد منهم يقسم N ، لذا فإن العوامل الأساسية لـ N ليست في تلك القائمة ، وعلى وجه الخصوص يجب أن يكون هناك الأعداد الأولية الجديدة بعد 29.
كيفية تحديد ما إذا كان الرقم أوليًا
يمكن استخدام الكمبيوتر لاختبار أعداد كبيرة للغاية ، لمعرفة ما إذا كانت أولية ، ولكن لأنه لا يوجد حد لمقدار العدد الطبيعي ، الذي يمكن أن يكون ، فهناك دائمًا نقطة يصبح فيها الاختبار بهذه الطريقة ، مهمة كبيرة جدًا ، حتى بالنسبة لأقوى أجهزة الكمبيوتر العملاقة.
وقد تمت صياغة خوارزميات مختلفة ، في محاولة لتوليد أعداد أولية أكبر من أي وقت مضى ، فعلى سبيل المثال ، لنفترض أن (n) عدد صحيح ، ولا يُعرف بعد ما إذا كان (n) رئيسًا أو مركبًا ، وهو رقم موجب ، يمكن إجراؤه عن طريق ضرب عددين أصغر معًا.[2]
فأولاً ، خذ الجذر التربيعي أو قوة 1/2 – من n ، ثم تقريب هذا الرقم إلى أعلى رقم صحيح ثاني التالي واستدعاء النتيجة m ، ثم ابحث عن كل الحاصل التالي :
q
m
=
n
/
m
q
(
m
-1)
=
n
/ (
m
-1)
q
(
m
-2)
=
n
/ (
m
-2)
q
(
m
-3)
=
n
/ (
m
-3)
. . .
q
3
=
n
/ 3
q
2
=
n
/ 2
فالرقم n هو أولي إذا ، وفقط إذا ، لا شيء من q ، كما هو مشتق أعلاه ، هو أرقام صحيحة.
الأعداد الأولية والتشفير
يتبع
التشفير
دائمًا قاعدة أساسية ، أنه لا يحتاج الخوارزمية ، أو الإجراء الفعلي المستخدم ، للحفاظ على سرها ، ولكن المفتاح يفعل ذلك ، حتى أكثر القراصنة تعقيدًا في العالم لن يتمكنوا من فك تشفير البيانات طالما أن المفتاح لا يزال سريًا ، والأرقام الأولية مفيدة جدًا لإنشاء المفاتيح
فعلى سبيل المثال ، تكمن قوة تشفير المفتاح العام أو الخاص ، في حقيقة أنه من السهل حساب منتج رقمين أوليين يتم اختيارهم عشوائيًا ، ولكن قد يكون من الصعب جدًا ، ويستغرق وقتًا طويلاً لتحديد أي رقمين رئيسيين ، تم استخدامهما لإنشاء رقم منتج كبير ، عندما يكون المنتج معروفًا فقط.
ففي RSA ((Rivest-Shamir-Adleman) مفتاح التشفير العام ، من المفترض دائمًا أن تكون الأعداد الأولية فريدة ، والأساسيات التي يستخدمها تبادل مفاتيح Diffie-Hellman ، ومخططات تشفير معيار التوقيع الرقمي (DSS) ، ومع ذلك يتم توحيدها واستخدامها بشكل متكرر ، من قبل عدد كبير من التطبيقات.
حقيقة رقم 11 كعدد أولى
من الممكن معرفة استخدام الطرق الرياضية سواء كان العدد الصحيح ، هو رقم أولي أم لا ، وبالنسبة إلى 11 ، فنعم هو هو عدد أولى ، و 11 هو رقم أولي لأنه يحتوي على قسمين منفصلين فقط ، 1 ونفسه (11). [3]
تردد الأعداد الأولية
وعن تكرار الأعداد الأولية ، وكم عدد الأعداد الأولية الموجودة ، فتقريبًا بين (مليون ومليون بالإضافة إلى ألف) ، والكم يتراوح بين (مليار ومليار زائد ألف ، وهنا يأتي السؤال هل يمكننا تقدير عدد الأعداد الأولية بين تريليون وتريليون زائد ألف؟
.
وتكشف الحسابات أن الأعداد الأولية تصبح أكثر ندرة ، مع زيادة الأعداد ، ولكن هل من الممكن ذكر نظرية دقيقة تعبر عن مدى ندرة هذه الأشياء بالضبط ، وبالفعل تم ذكر هذه النظرية لأول مرة كحد التخمين ، و(تسمى أيضًا الفرضية) ، وهي عبارة رياضية يعتقد أنها صحيحة ، ولكن لم يتم إثباتها بعد ، فيمكن أن ينتج (الإيمان بالصلاحية) ، من التحقق من الحالات الخاصة ، أو الأدلة الحسابية ، أو الحدس الرياضي ، وهناك تخمينات رياضية لا يزال الناس يختلفون حولها.[4]
من قبل عالم الرياضيات الكبير
كارل فريدريش
غاوس في 1793 م ، في سن 16 ، وفي عالم الرياضيات القرن التاسع عشر برنهارد ريمان ، الذي أثر على دراسة الأعداد الأولية في العصر الحديث ، أكثر من أي شخص آخر ، طور أدوات أخرى مطلوبة للتعامل مع عليه.
ولكن تم تقديم إثبات رسمي للنظرية فقط في عام 1896 ، بعد قرن من ذكره ، والمثير للدهشة أنه تم تقديم برهانين مستقلين في نفس العام ، من قبل الفرنسي جاك هادامارد ، والبلجيكية دي لا فالييه بوسين ، ومن المثير للاهتمام أن نلاحظ أن كلا الرجلين ولدوا في وقت وفاة ريمان ، ونظرية ثبت أنها تلقت اسم (نظرية العدد الأولي) نظرا لأهميتها.
إن الصياغة الدقيقة لنظرية العدد الأولي ، حتى أكثر من ذلك ، تتطلب تفاصيل الدليل ، رياضيات متقدمة لا يمكننا مناقشتها ، ولكن بشكل أقل دقة ، تنص نظرية الأعداد الأولية على أن تكرار الأعداد الأولية حول x يتناسب عكسًا مع عدد الأرقام في x.
وفي المثال أعلاه ، سيكون عدد الأعداد الأولية في (نافذة) بطول 1000 حوالي مليون (مما يعني الفاصل الزمني بين مليون ومليون وألف) 50٪ أكبر من عدد الأعداد الأولية في نفس (النافذة) حوالي مليار (النسبة 9: 6 ، تمامًا مثل النسبة بين عدد الأصفار في مليار ومليون) ، وحوالي ضعف عدد الأعداد الأولية في نفس النافذة حوالي تريليون (حيث نسبة عدد
الأصفار
هي 12: 6).
وفي الواقع ، تظهر حسابات الكمبيوتر أن هناك 75 رقمًا رئيسيًا في النافذة الأولى ، 49 في الثانية و 37 فقط في الثالثة ، بين تريليون وتريليون زائد ألف.